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We present a new simulation code for electrostatic waves in one dimension which
uses the Vlasov equation to integrate the distribution function andef@gequation
to integrate the electric field forward in time. Previous Vlasov codes used the Vlasov
and Poisson equations. Using Aerp’s equation has two advantages. First, boundary
conditions do not have to be set on the electric field. Second, it forms a logical basis
for an electromagnetic code since the time integration of the electric and magnetic
fields is treated in a similar way. MacCormack’s method is used to integrate the
Vlasov equation, which was found to be easy to implement and reliable. A stability
analysis is presented for the MacCormack scheme applied to the Vlasov equation.
Conditions for stability are more stringent than the simple Courant—Friedrich’s—
Lewy (CFL) conditions for the spatial and velocity grids. We provide a simple linear
function which when combined with the CFL conditions should ensure stability.
Simulation results for Landau damping are in excellent agreement with numerical
solutions of the linear dispersion relation for a wide range of wavelengths. The code
is also able to retain phase memory as demonstrated by the recurrence effect and
reproduce the effects of particle trapping. The use of Amjs equation enables
standing and traveling waves to be produced depending on whether the current is
zero or non-zero, respectively. In simulations where the initial current is non-zero
and Maxwell’'s equations are satisfied initially, additional standing waves may be set
up, which could be important when the coupling of wave fields from a transmitter to
a plasma is considered 2001 Academic Press
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INTRODUCTION

Numerical simulations have become an increasingly important tool to study comp
problems in space plasma physics. The kinetic theory of collisionless space plasmas i
scribed by the set of Vlasov—Maxwell equations. There are two methods commonly use
solve these equations: one is the particle-in-cell (PIC) method and the other is known a:
Vlasov simulation method [17]. In both methods there are three dependent variables,
particle distribution functionf (r, v, t) and the electromagnetic fiel@&r, t) andB(r, t).
There are three independent variables, spaeelocityv, and timet. The PIC method is the
one mostwidely used and is in effect a mixed Lagrangian—Eulerian methodf hterepre-
sented by many test particles or super particles. By Lagrangian integration along the par
trajectories using the discretized form of the particle equations of mati@mreconstructed
at a later time by summing up these super particles in each cell of an Eulerian grid. -
currentJ(r, t) and charge density(r, t) are obtained by integratinf overv, and are used
to stepE andB forward by solving Maxwell's equations on the discrete Eulerian grid.

In the Vlasov simulation method the particle distribution functfais defined on a grid in
phasef(, v) space. Several methods have been used to solve the Vlasov—Maxwell equat
including finite difference [3], semi-Lagrangian [6], and spectral methods [11]. Hybr
techniques have also been used [8, 19] which are mixed Lagrangian—Eulerian method:
the PIC method. However, the particles are used only to provide information on how
distribution function is carried across phase space. The distribution function is integre
forward in time using Liouville’s theorem which states that for a given particle spdcies
is constant along the particle trajectory in phase space.

The fact that one super particle represents many real particles in a PIC code leads tc
disadvantages: First, particle codes have relatively high numerical noise, and second
results are scaled by the unphysical mass and charge of the super particles. High nume
noise means that very often simulations have to be set up with unrealistic input value
order to obtain results above the noise level. This may not always pertain to observati
In addition, numerical noise causes unwanted numerical particle diffusion [21]. In contrz
Vlasov codes have very low noise levels and are not subject to mass scaling. Howe
Vlasov codes are subject to problems which result from filamentation in which fine struct
develops in the distribution function. The fine structure develops with time until it becom
comparable to the grid spacing in which case numerical diffusion may ensue and in s
cases the simulation may fail. Filamentation has been a particularly difficult problem
overcome, and is one reason why the use of PIC codes has become so widespread. How:
solution to the filamentation problem was found by Klimas [14] and demonstrated by Klirm
and Farrell [15]. This has stimulated the development of new Vlasov codes. The recurre
effect [6] is another limitation of the Vlasov codes that is related to filamentation but
unphysical. Recurrence is a problem for simulations where the wave field is decaying,
should not present a problem in simulations where the waves are growing since the ele
field perturbs the ballistic trajectories and may cause trapping in certain velocity rang
Vlasov codes have also been difficult to extend to more than one dimension due to the |
requirements for computer memory and speed. With the development of massively par
computers this will become less of a problem.

Several techniques have been developed to integrate the Vlasov equation. Gazdag
used an accurate space derivative method which was accurate to the third order for
dimension in real space and two dimensions in velocity space (1d2v). This was applie
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Bernstein waves propagating across the magnetic field. Cheng and Knorr [6] introduce
splitting scheme in which the Vlasov equation is broken down into two coupled equatic
and integrated for half a time step in space and then half a time step in velocity spe
They applied this to study linear and nonlinear Landau damping of Langmuir waves in c
dimension. It has since been used by other authors in applications to double layers
Other methods, using Fourier transforms, have also been demonstrated [15].

One feature common to all these previous studies is that they solve Vlasov’s equation \
Poisson’s equation. In this paper we present a new technique which solves Vlasov's equc
with Ampere’s law. By solving these two equations we can calculate the time evolution
the electric field directly without having to apply spatial boundary conditions to the elect
field. This should yield the same physical results for electrostatic waves [16], but the metl
should be extendable to electromagnetic waves as well. We demonstrate that the me
agrees with the results of Landau damping for both standing and traveling waves and
also reproduce the effects of nonlinear trapping. The use ofekepéquation enables both
propagating and traveling wave solutions for periodic boundary conditions.

THE VLASOV-MAXWELL EQUATIONS

We consider the set of Vlasov—Maxwell equations for 1D in space, and 1D in veloci
space, with no external magnetic field. We consider only electrostatic waves where
induced magnetic field is so small it can be neglected. We integrate the Vlasov equatio

of, af, g, _ of

2=y TEZ 1
at X T m, X ov, (2)

together with Amptre’s law

8Ex,int

ot = _Czﬂo Jx,int, (2)

and check that Poisson’s equation is satisfied

aEx,int __ Pint
X e

: 3)

whereEx (X, t) = Exint + Ex.ext iS the sum of the internal and external electric fields, anc
oint (X, t) and Jy int (X, t) are the charge and current densities given by

Pint(x» t) = an / f(T(X’ Ux, t) dUX’ (4)
I int(X, 1) = Zq" / vx o (X, vy, 1) duy, (5)

where the summation is over all ion and electron species in the plasma. Here we cons
the ions to be H and to form a fixed neutralizing background with constant phase spa
density. We only consider electron dynamics. This is reasonable for time scales of the o
of /m;/me ~ 43 electron plasma periods or under conditions where the ion dynamics
not important. The external electric fielHgy:, Satisfies equations analogous to Eq. (2) anc
(3) but with Ex int, Jx.int, andpint replaced byEy ext, Jx ext: aNdpext. Note thatJy, ex; and
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pext are not determined by the distribution function since they are external. From now
we drop the subscript on the one-dimensional vector quantities and the subséeripend
extsince we shall not consider applied external fields.

THE INTEGRATION METHOD

At timet = 0 we specifyf (x, v) and E(x) and calculatep (x) and J(x) from Egs. (4)
and (5). We integrate (1) and (2) to gktx, v) andE(x) at the new time step and then use
the newf in Egs. (4) and (5) to calculaie(x) and J(x). We then repeat the cycle for the
required number of time steps. At each time step we check that Eq. (3) is satisfied and
J fdxdv is conserved.

Specifically, we use MacCormack’s integration method (e.g., [1]) for the Vlasov equatic
This has the advantage that it does not require explicit calculation of second derivatives
yetitis accurate to second order. Itis therefore easier to implement than other methods,
as the Lax—Wendroff method, used in other space plasma simulation codes. Viffjtiag
the distribution function at positiox = i Ax with velocity vy, = j Av attimet = nAt, we
can estimatef at then + 1 time step to second order by the Taylor series

af " At292f "
£l = N 4 At— —_— o 6
I I + ot i + 2 8t2 i + ( )
similarly we have
af ™t af | 32f|"
—_ = — 72 +"'. (7)
Eliminatingaa%mj we obtain
At {af I af |
gl — g0 20|20 — O(At3). 8
¥ G2 el el + O(At) (8)

In the MacCormack method we calcul%ﬁ“ and %V‘*l by finite difference as follows:
The first step is to use forward difference in spageid velocity () to obtain

(%)n - {fir-]kl,jA_ fi?j} B ﬂEin+1/2[ fila — T ] ©)
i X m Av
The second step is to predi6t; at the next time step using a first-order Taylor series
— af\"
+1
fii = fi + At(a)i,j. (10)

The third step is to estimate the time derivativef?p,fj using backward difference,

(2:‘;)““ S [fln]rl; fin—+11.j] _ ﬂEin+1/2 [ - Inﬁl] (11)
L X m Av
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Finally f is mtegrated forward in time by substituting (9) and (11) into (8) Wm%{ﬁe)““
is an estimate of 3 )™

Since the average time derivative is taken betweemdt + At using forward and
backward difference it can be shown th‘@f !is accurate to second order in space and tim
[1]. Boundary conditions are applied to interpolate the rfeanto the outermost grid cells
which cannot be calculated from Eq. (8). The interpolation region is only one grid cell wi
in contrast to two grid cells wide for second order methods.

To calculate Egs. (9) and (11) the electric field must be integrated before the Vlas
equation. Since the curredtat timet is known we use a second-order central difference
method to integrate the electric field

JE
EMY = 2At + EMt = —2AtcPp, 3" 4 EME (12)
E: '

to obtain

1
S = (BN +EMY). (13)

whereE andJ refer to the internal electric field and current, respectively. Since the curre
is obtained from an integration over velocity space it does not depend on grid cells outs
the simulation box. Thus boundary conditions do not have to be set on the electric fie
This is an advantage over using Poisson’s equation for finding the electric field.

STABILITY ANALYSIS

We now present a stability analysis for our Vlasov simulation code using the MacCorme
scheme. Substituting (6), (7), (8), and (10) into (9) we obtain an expressiofi'fdrin
terms of f" and terms involving);, v;_1, EI", and EM!. By expanding all terms involving
i — 1, ] — 1, etc.in Taylor series and neglecting terms of orden® and above, the resulting
expression can be written back in an analytical form. The analytical formis exactly the sa
as that obtained by expanding the Vlasov equation in a Taylor series neglecting third
higher order terms given by

af  LAt29%f g af g% _,At292%f

ft+At) = f(t) —vAt— + 1> —— — ~EAt— + —E?
E+AD =TO —vAt s + v " m 2 Tt 2 a2
At? 8E AE\ of 92 f At2 of
a 9= =Ny dEpar 9270 (14
m 2 ax ot Jov m oXov m 2 09X

Note here that the last three terms express the coupling between convection in real s
and convection in velocity space. They are important for the stability calculations belc
We also note that the difference between udiig®/? as opposed t&" in (9) andE"*+!
in (11) is negligible since the difference is on the orde¢af)3. This has been checked in
our simulations.

Assuming thatf varies as exf)kx) exp(ik,v), thenE varies as exfkx), and we obtain
an amplification factorg, for the MacCormack method given by

fn+l

fn = 1—ibj sin(¢) + b2(cosp — 1) — ia; sin(y) + & (cosy — 1)

g:

+ %a; bi[cos¢ + cosyr — 2 — co2¢ — ) + cos 2p]
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+i %a bi[sing + sinyr + sin(2¢ — ) — sin 2p]

1 . o
- 5a (bj — by)[cos(p — y) — cosp +i sin(¢ — ) +isiny], (15)

where
= e g (16)
and
j= %vi’ (17)

and¢ = kAx andys = k, Av. For stability we requirég|?> < 1. In the limit E = 0, which
is the free-streaming case, we obtain

A
At < 2% (18)
Vj

which is the well-known Courant—Friedrich’'s—Lewy (CFL) condition for stability. Figure 1:
shows the variation dig| with kAx for a Courant factoiCr = v; At/Ax = 0.8. It shows
that short wavelength waves are heavily damped. In the limit 0, where the advection
term is neglected, we obtain

me Av

At < q—: S (19)
which, by analogy, represents the condition for numerical stability on the velocity grid.
effectively says thatintimat information must not propagate across more than one veloci
cell. In the MacCormack scheme used here the stability requirement is more stringent |
that given by the CFL condition since the integration involves extra terms such as
82 f /axdv term. Figure 1b shows the computed valuefgofor a range of andb between
0 and 1 in steps of 0.04. At each value afandb, |g| has been computed fa¢ and
¢ varying between 0 and in steps of 8. Contours of the marginally unstable values
of g between 1.02 and 1.10 are shown by the solid lines and lie outside the dashed
corresponding t@ = 1 — b. Inside the dashed line we hayg < 1 and the scheme is
stable.

Thus, satisfying Egs. (18) and (19) is not sufficient for stability since it is still possib
to have a range ad < 1 andb < 1 where|g| > 1; for examplea = 0.8 andb = 0.8. In
the MacCormack scheme used here stability also requires, to a good approximation,

a<l-h (20)

In all our simulations we ensure that conditions (18), (19), and (20) are satisfied, wyhere
is replaced with the maximum grid velocity,; and Ei”“/2 is replaced with the maximum
electric fieldEnax. The time step is also multiplied by a Courant facfgr = 0.8 to ensure

stability.
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FIG.1. Stability of the MacCormack method for integrating the Vlasov equation. (a) The amplification factc
|gl, versus normalized wavenumblef x, for the free-streaming Vlasov equation and a Courant faCtok= 0.8.
(b) The amplification factor,g|, versus the velocity space Courant facigrand the real space Courant factor,
b, for the full Vlasov equation. Cases of marginal instabilitp2< |g| < 1.10 are shown by the solid lines.
The dashed line indicates= 1 — b, which approximately separates the statitg < 1) and unstabl€|g| > 1)
regions.

CURRENT INTEGRATION

Itis important to calculate the current accurately in order to step the electric field forwe
in time. This involves an integration over velocity space as defined in Eq. (5). We have tr
three different integration methods. The first is a simple summation over velocity sps
from negative to positive velocities, the second is a three point Simpson method, and
third is a summation in pairs. The “in pairs” method calculates the functier @t) and
—vf (—v), so that they should be of the same order of magnitude but opposite in sign,
forms the sum. This is repeated for other values oftil the whole range is covered.

We have performed a series of integration tests by calculating, for each of the three il
gration methods, the current of a drifting Maxwellian distribution at various drift velocitie:
The distribution function is defined by

Ne(X)
Y20,

f(x,v) = exp[—(vx — va)?/aZ]8(vy)8(vy), (21)

where for each component(x) is the electron number density inh vy is the drift
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FIG.2. Comparison between different integration methods for obtaining the current. The top panel shows
function to be integrated for different drift velocities. The middle two panels show the error in the current usi
Simpson’s integration method (crosses), the summing method (squares), and the “in pairs” method (triangle:
1000 grid points. The bottom panel shows the results of the “in pairs” method when the number of grid point
reduced from 1000 (triangles) to 10 (diamonds).
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velocity, ando, is the thermal velocity defined & = %meag, whereT, is the electron
temperature. In the calculation we set= 10° m~2 andT, = 0.1 eV and varyy. The top
panel of Fig. 2 shows the flux,f, versus velocityp, for 14 different drift velocities. By
assumingg = Eo sin(kx — wpet), Wherewpe = (Nef2/ (Meeo)) /2 is the plasma frequency,
and using (5) and (2), the range @f corresponds to electric fields in the range 1&

E <5x 1071V m~L The velocity grid has 1000 grid points and the center of the velocit
grid is setab = O (i.e., calculated at = 0) as the function is zero at this point for all drift
velocities. Note however that zero values are not shown on the log scale. The maxin
grid velocity, veyt, was set tgys = Sae.

The second and third panels show the percentage error in current density versus the
velocity and electric field, respectively, for the three integration methods. All three methc
provide accurate integration f& < 5 x 10-2V m~1. For larger electric fields the function
is highly skewed and there is a large contribution to the integral outsigi¢ Tests showed
that accuracy could be regained by increasigg. Throughout the whole range of drift
velocities the “in pairs” method performs consistently better than either the Simpson
summing methods. It is particularly good when compared to the other methods for d
velocities much less than the grid sizg’ Av « 1. In this region the error in the calculated
currentis a fraction of a percent while the error in the other methods increases up to 109
should also be noted that while the percentage errdricreases with decreasimg/Av
the absolute erroris approximately constant over five orders of magnitude. When the nun
of points in the “in pairs” method was changed from 1000 to 10 (bottom panel in Fig. 2)
is remarkable that this makes very little difference to the error. This suggests that the |
moment of the distribution function is relatively insensitive to the grid resolution when tt
distribution function is smooth.

LANDAU DAMPING FOR STANDING WAVES

To demonstrate the use and accuracy of the code we now apply it to the Landau dam
problem. The electron distribution function is set to be Maxwellian with the same temp
ature as used above but the initial electron density and drift velocity are allowed to vary
space. We apply a standing wave of the form

E = [Eosin(kx — wt) 4+ Egsin(kx 4+ wt)]e”* (22)

to the simulation box, where we assume that the wave is exponentially damped in accord
with linear Landau damping. Hene is the growth { > 0) or damping ¥ < 0) rate. We
solve Poisson’s equation to find the electron density variation in space so thatGtve
have

2keoE
Ne(X) = M + 00

cogkx), (23)

e

wheren; is the constant ion number density apdncludes the sign of the charge. Solving
Ampére’s equation, there is a nonzero currerttat0 given by

J = —2y¢pEp sin(kx), (24)
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and hence the drift velocity is

2)/60 Eo

Ne(X)Qe

Vge(X) = — sin(kx). (25)
The distribution function at = 0 is now defined and is consistent with the long time solutiot
of the Vlasov—Maxwell equations. However, it should be noted that for any perturbati
to the Vlasov system there is also a ballistic response which is not included in the I
time solution [18]. The ballistic response becomes highly oscillatory in phase space as't
increases. Since we do not know what this response would te- &, it is omitted from
the initial distribution function.

The distribution function having been defined the frequency and damping rate for
initial k for Langmuir waves are found from linear theory [18] as

© = wpe(1+ 323" (26)

and

T Wpe 1 3
__ [ 1 /3 27
Y 81313 eXp[ x5z T 2]’ @n

whereip = ae/(wpeﬁ) is the Debye length. To ensure that the physics of Landau dampi
would be included in the simulatiomg,; was set greater than the phase velogif\k. We
setveyt = Sae, Where the velocity grid extends fromwet to +uvgyt. We use 300 grid points
for the velocity grid so tha\v « ae. Since it was shown in the last section that the choic
of vyt = Bue Sets a limit on the maximum electric field for accurate integration we choo
Eo = 0.5 mV m~! (which gives a maximum electric field of 1 mV ) to be well inside
that limit.

The boundary conditions for the distribution function are periodicand of fourth-order
interpolationinv. L is the length of the simulation box inand is set equal to the wavelength
of the applied electric field. The number of spatial grid points,is= 101; thus the grid
resolution satisfiedx < Ap. The time step is\t = 4.96 x 10~ s which corresponds to
a=140x 102 andb = 0.8. A list of the parameters used in the simulation is given ir
Table I.

Linear Landau damping is only valid for time scales of the order of the trapping or bour
time for particles in the potential well. The bounce time is given by [5]

Me
QekE’

Ty = (28)

In addition, Vlasov codes with periodic boundary conditions in space are known to hz
a recurrence effect whereby the particle distribution function at time0 is reconstituted
(with some small modification) at some later time given by [6]

2

= (29)

r

This corresponds to the time taken for the particles in the lowest velocity grid cell
travel one wavelength back to the same phase on the wave. At the same time, part
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TABLE |
Constants for the Landau Damping Simulations Used in Fig. 3

Quantity Symbol Value
lon number density n; 9.0x 10° m=3
Electron plasma frequency @pe 5.352x 10¢ rad st
Electron temperature Te 0.1eV
Electron thermal velocity Qe 1.875x 10 ms*
Electron drift velocity Vg Varies
Debye length Ab 2.478 m
Grid length inx L 5.818x 10' m
Minimum wavenumber ky 0.108 nrt
Number of grid cells irx ny 101
Grid cell length inx AX 5.818x 10t m
Maximum grid velocity Veut Sae
Number of grid cells irv n, 301
Grid cell length inv Av 6.252x 10 ms?
Electric field amplitude E, 50x10*V mt
Courant factor Ce 0.8
Bounce time Ty 1.44x 1073s
Recurrence time T, 9.31x10°3%s
Timestep At 496x 107s

on other velocity grid cells at integer multiples &b will have traveled integer multiples
of a wavelength and will also be back at the same phase on the wave. Thus a Vs
simulation of linear Landau damping is only valid on a time scal&yodr T,, whichever

is the smallest. However, in simulations where the electric field grows to large amplituc
from an initially unstable distribution function the ballistic free streaming trajectories a
perturbed and may be trapped by the large electric field. Under these conditions only |
of the distribution function in the high velocity grid cells may be reconstituted, if at all, an
therefore recurrence should not present a problem.

Figure 3 (top panel) shows an example of the time evolution of the maximum elect
field Emay for the weakly damped case wheee= 0.108 nm 2. Enax is obtained by taking
the maximum electric field over the entire simulation box at each time step and theref
oscillates through zero since standing waves are excited in this simulation. Here the we
have no momentum since Poynting’s theorem shows there is no energy flux for electros
waves. The high-frequency oscillations correspond to oscillations at twice the plasma
guency as expected for electrostatic waves. (Note that a factor of 2 occurs because the v
are standing waves.) The low-frequency envelope corresponds to the bounce frequenc)
illustrates the effects of linear and nonlinear Landau damping.

Over the first high-frequency cycEmax drops from 1 to approximately 0.78 mVth
Exactly the same type of behavior is present in previous simulations (e.g., 6, 20), wh
solve different equations using numerical schemes different from those presented here
therefore conclude that this is not a numerical problem. Since linear theory shows that tf
are two time scales for the plasma to respond to an initial disturbance [18], and that lin
Landau damping is only valid on relatively long time scales after the ballistic response |
been phase mixed, we attribute the initial drofinax to initial transient effects, i.e., to the
contribution of poles other than the two principal Landau poles [2, 7].
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FIG. 3. Weak Landau damping for a standing wdve-= 0.108 n1. The time evolution of the maximum
electric fieldEnax is shown on a log scale in the top panel. The middle and bottom panels show the damping |
and correlation coefficient obtained from a linear regression through the peaks in the electric field.

Since the electric field should decay exponentially until particles are trapped, we h
taken the peaks in ld€max) and calculated the damping rate from a linear regression fi
The first two values oE 4« have been omitted in the regression analysis to allow for ar
transient effects to die away. The normalized damping fgte,e, is shown in the middle
panel of Fig. 3, and the regression correlation coeffiagiemthich is a measure of how good
the fitis, is shown in the bottom panel. Batliwpe andr vary as more and more points are
included in the regression analysis. For times less than half the bounce ftimg varies
between-3.0 x 103 and—4.7 x 103, and|r | > 0.997. This compares with a theoretical
value ofy /wpe = —6.78 x 102 using the equations above. The particle bounce tifpe,
corresponds to the breakdown of linear theory. Theoretically we Tiave1.44 ms which
is approximately at the first minimum in the envelopeEafax.

The case for smaller wave numbérs- 0.216 nT ! where Landau damping is stronger is
shown in Fig. 4. The electric field decays by more than three orders of magnitude dow
an almost constant minimum level. The recurrence effect is quite clearly seen close to
theoretical value of = 4.65 ms where the electric field is reconstituted. The electric fiel
does not reach its original value because of effects other than free streaming. The recurt
effect is a numerical effect introduced by a finite velocity grid. In the analytical limif
Av — 0, this effect would not be present. However, the recurrence effect can be regar
as another way of demonstrating the concept of phase memory and therefore a test c
simulation code. The theory of Landau damping shows that, while the electric field rr
decay down to the noise level, the particles retain information about the initial disturbanc
a collisionless plasma. The concept has been demonstrated experimentally in the labor
through the phenomenon of plasma wave echoes [22]. In our simulation phase memo
stored in the velocity distribution function. As information propagates through the spat
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FIG. 4. Strong Landau damping for a standing wéve 0.216 nT*. HereAt = 2.48 x 107 s, T, = 1.02 x
103 s,andT, =4.65x 1073 s.

grid at different velocities, periodic boundary conditions in space ensure that at some I:
time, T;, information on the velocity grid will end up back in phase after information ir
the lowest grid cell has traveled an integral number of wavelengths, thus reconstituting
initial disturbance. The recurrence effect demonstrates that our simulation code retain:s
property of phase memory. In some simulation codes the distribution function is smoott
to eliminate high-frequency oscillations on the velocity grid [e.g., 15], often referred to
filamentation. Smoothing may not only remove the recurrence effect, but also elimin
phase memory, which is a real physical effect.

A comparison between the linear Landau damping rates obtained from our Vlasov s
ulations and those from linear theory is shown in Fig. 5. The solid line shows the damp
rates obtained from numerical solutions of the linear dispersion relation using the HOTR
code [12] and the dashed line shows the analytical results using Eqgs. (26) and (27). Th
amonds show the Vlasov simulation results derived from the linear regression( B9
ont fort < T,/2. No results are shown fdp > 0.6 since the HOTRAY code cannot
converge on a solution, and since it becomes very difficult to determine the damping 1
from the Vlasov simulation due to the very rapid decay of the wave electric field. The Vlas
simulation results agree extremely well with the HOTRAY results, rather than the analyti
result, for allkkip shown. Thus, even though the simulation code uses the damping rate fr
analytical theory to initiate the run, which may be in error, the damping rate calculated frc
the output is correct.

LANDAU DAMPING FOR TRAVELING WAVES
We now consider the case of a traveling wave in the simulation box of the form

E = Egsin(kx — wt)e’!. (30)
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FIG. 5. Comparison between the damping rates obtained from theory (dashed line), numerical solution
the linear dispersion relation using HOTRAY (solid line), and the Vlasov simulation code for standing wav
(triangles).

Solving Poisson’s equation we obtain the electron density-a0 as

keoE
Ne(X) = N + 20

cogkx). (31)

e

and solving Ampre’s equation we obtain a currentat 0 given by
J = €gEg(w cogkx) — y sin(kx)), (32)

and hence the drift velocity in the Maxwellian distributiort at 0 is

€0 Eo
Ne(X)0e

vge(X) = (w cogkx) — y sin(kx)). (33)

The results for Landau damping of a traveling wave vkita 0.243 n are shown in
Fig. 6 for the same plasma parameters as before. The top panel shows the results for i
values ofw andy taken from analytical theory. Instead Bf,ax decaying smoothly there
is now a ripple on the electric field. Even when the exact numerical solutions &rd
y are provided as input (middle panel), or whenr= 0 (bottom panel), there is very little
effect on the ripple. In fact we find that the decay rate is very robust in a wide range
o andy but that the initial value of effectively controls the amplitude of the ripple. We
interpret the ripple as being due to a standing wave being excited on top of the trave
wave. SinceA Enax/ Emax remains approximately constant in time this suggests that bo
waves decay at the same rate and therefore have the same wavelength. We believe
the ripple originates from the initial transient effects, i.e., due to the contribution of pol
other than the two principal Landau poles which are not included in the initial conditio
(Egs. (30)—(33)).

Although the presence of an additional standing wave does not affect our linear Lan
damping results, its presence in other applications may be important. For example, in
transmitter problem one needs to know how electric fields transmitted from a spacec
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FIG. 6. Strong Landau damping for a traveling wakve= 0.243 nt*. The results are shown for theoretical
input values ofo andy (top), numerical solutions using HOTRAY (middle), and numerical solutiongfbut
y = 0 (bottom). HereAt = 2.21x 1077 s, T, = 9.61 x 10™*s, andT, = 4.14 x 103%s.

couple to the plasma. If both propagating and standing waves are excited, as our simula
suggest, then this may lead to additional nonlinear scattering from the standing waves
a more complicated coupling mechanism.

TRAVELING VERSUS STANDING WAVES

By solving the Vlasov—Amere equations both standing and traveling waves can &
obtained depending on the initial current. If the initial current is zero, we obtain standi
waves; ifitis nonzero we obtain traveling waves. (Note thatin Figs. 3 and 4 the initial curre
is very small which is why the result is a standing wave.) However, in a version of our co
where we solve the Vlasov—Poisson equations for periodic boundary conditions stanc
wave solutions were obtained even when the initial current was nonzero. The differenc
due to the method of calculating the electric field. When using Poisson’s equation the fi
at one position must be specified in order for the field across the grid to be calculated.
a standing wave one can chodse= 0 at the boundary. However, for a traveling wave it
is not clear what value to choose at the boundary, or at which location the field should
zero on subsequent time steps. Since some choice must be made, the easiest solutio
set the field to be a constant value at the boundary which results in a standing wave
contrast, in solving Amere’s equation the electric field is obtained from the current an
a previous value of the electric field at the same location. The field does not need tc
specified at the boundary and thus traveling wave solutions are possible with the Vlas
Ampére equations. However, we note that it may also be possible to obtain traveling w
solutions in other Vlasov—Poisson codes by choosing an initial distribution function tt
preferentially damps traveling waves propagating in one direction [13].
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ELECTRON TRAPPING

We have also tested the code for the case where the initial energy density of the w
(1.1 x 10°* J n73) is comparable to the energy density of the thermal electrodsx(1
1071 J n3) to see if the numerical scheme can cope with the effects of particle trappir
Figure 7 (top panel) shows the evolution of the electric field for a much larger iifielld of
50 mV nt ! and wavenumbes = 0.162 nTt. The number of grid cells is the same as before
but now the timestep determined from the stability criteriats= 3.31 x 10~ s and the
bounce time T, = 1.66 x 10~ s) is less than the recurrence tine & 6.20 x 1072 s).
The initial decay of the electric field and subsequent increase at aboil} indicates that
particle trapping in the potential well of the wave is taking place. The linear regression
through the maxima of the electric field is shown in the middle panel. Note that the fi
point corresponds to a fit through the first three maxima whetdl, and yields a damping
ratey /wpe < —0.35. This is much higher than the linear damping rate at this valde of
(see Fig. 5) indicating nonlinear Landau damping.

To illustrate trapping effects more clearly, plots of the distribution function are shown
Fig. 8. Note that for clarity the surface plots in the left-hand column show the log of ti
distribution function for one half of the velocity grid while the contour plots in the right
hand column show both positive and negative velocities. The distribution function in t
top panelis shown far= 4.47 x 10~*s, such thal, < t < T;, with time increasing down
the page. Electron trapping can be identified in the distribution function by the elliptic
depression in the surface plot at a velocity centred at approximatef/x 10° msL. This
value corresponds very well to the phase velocity of the wave calculated from (26). T

g
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FIG.7. Nonlinear Landau damping for a standing wave vtk 0.162 nr* andE = 50 mV n11. The time
evolution of the maximum electric fiell,,., is shown on a log scale in the top panel. The middle and bottorn
panels show the damping rate and correlation coefficient obtained from a linear regression through the pee
the electric field. The first point in the middle panel corresponds to a fit through the first three maxima.
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FIG. 8. The electron distribution function for three selected times illustrating electron trapping effects. T
surface plots (left-hand column) show the log of the distribution function for one half of the velocity grid onl
The contour plots (right-hand column) illustrate left and right going waves constituting a standing wave. Ti
evolves down the page from= 4.47, 4.63, and 80 x 107*s.

contour plots show the presence of two regions of trapping, corresponding to waves trave
in opposite directions, as expected for a standing wave. The structure in the distribuf
function outside the region of trapping is caused by filamentation. Note that as the ti
sequence evolves from 4.47 t8 x 10~ s the elliptical structures maintain their form

and move across the simulation grid as required. Thus, at least for this set of parameters
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code can reproduce the results of particle trapping. However, we note that the applica
of smoothing techniques (e.g., 14) may be required for some scientific problems but th
left for a future development.

CONCLUSIONS

We have developed a new numerical simulation code for electrostatic waves in «
dimension. To our knowledge, the code is unique in that it solves the Vlasove#emp
equations and not the Vlasov—Poisson equations as used in previous simulation codes
advantage of using Angge’s equation is that no spatial boundary conditions are require
for integration of the electric field and the code should be extendable to electromagn
waves as well. The Vlasov equation is integrated forward using MacCormack’s meth
which does not depend on a splitting scheme used in previous Vlasov simulation cc
and is second-order accurate but does not require second-order derivatives to be calct
explicitly. We found MacCormack’s method easy to implement and reliable. We have a
demonstrated a simple and accurate method of integrating the distribution function to ob
the current. Our stability analysis applied to the Vlasov—&nepequations yielded two
necessary conditions on the time step. One is the usual CFL condition for the linear sp:
advection equation; the other is an equivalent CFL condition for advection on the veloc
grid. However, satisfying both these conditions is not sufficient for stability. Instead, v
have shown that there is a simple linear relation between the two conditions which d
guarantee stability.

In our application to Landau damping, the results are in excellent agreement with nun
ical solutions of the linear dispersion relation over a wide range.gfwhere the growth
rates are small. The code retains phase memory after the electric field has decaye
demonstrated by the recurrence effect. The code can also reproduce the effects of nonl
trapping. Solving the Vlasov—Angpe equations allows both standing and traveling wav
solutions depending on the initial current, whereas in solving the Vlasov—Poisson equat
one must know how to set the boundary conditionstoin Poisson’s equation in order
to obtain traveling waves for periodic boundary conditions. Finally we point out that ev:
though Maxwell’'s equations may be satisfied for traveling waves initially, additional star
ing waves may be set up in the simulation. This may be important in simulations desig
to study how wave fields from a transmitter embedded in a plasma couple to the plasi
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